Giambattista Parascandolo Recurrent Neural Networks for Polyphonic Sound Event Detection
نویسندگان
چکیده
TAMPERE UNIVERSITY OF TECHNOLOGY Master‘s Degree Programme in Signal Processing PARASCANDOLO, GIAMBATTISTA: Recurrent neural networks for polyphonic sound event detection Master of Science Thesis, 66 pages November 2015 Major: Signal Processing Minor: Learning and Intelligent Systems Examiners: Tuomas Virtanen, Heikki Huttunen
منابع مشابه
Sound Event Detection in Multichannel Audio Using Spatial and Harmonic Features
In this paper, we propose the use of spatial and harmonic features in combination with long short term memory (LSTM) recurrent neural network (RNN) for automatic sound event detection (SED) task. Real life sound recordings typically have many overlapping sound events, making it hard to recognize with just mono channel audio. Human listeners have been successfully recognizing the mixture of over...
متن کاملA Transfer Learning Based Feature Extractor for Polyphonic Sound Event Detection Using Connectionist Temporal Classification
Sound event detection is the task of detecting the type, onset time, and offset time of sound events in audio streams. The mainstream solution is recurrent neural networks (RNNs), which usually predict the probability of each sound event at every time step. Connectionist temporal classification (CTC) has been applied in order to relax the need for exact annotations of onset and offset times; th...
متن کاملPolyphonic Sound Event Detection with Weak Labeling
Sound event detection (SED) is the task of detecting the type and the onset and offset times of sound events in audio streams. It is useful for purposes such as multimedia retrieval and surveillance. Sound event detection is difficult in several aspects when compared with speech recognition: first, sound events are much more variable than phonemes, notably in terms of duration but also in terms...
متن کاملRare Sound Event Detection Using 1d Convolutional Recurrent Neural Networks
Rare sound event detection is a newly proposed task in IEEE DCASE 2017 to identify the presence of monophonic sound event that is classified as an emergency and to detect the onset time of the event. In this paper, we introduce a rare sound event detection system using combination of 1D convolutional neural network (1D ConvNet) and recurrent neural network (RNN) with long shortterm memory units...
متن کاملBidirectional LSTM-HMM Hybrid System for Polyphonic Sound Event Detection
In this study, we propose a new method of polyphonic sound event detection based on a Bidirectional Long Short-Term Memory Hidden Markov Model hybrid system (BLSTM-HMM). We extend the hybrid model of neural network and HMM, which achieved stateof-the-art performance in the field of speech recognition, to the multi-label classification problem. This extension provides an explicit duration model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015